
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

AQA Computer Science GCSE
3.2 Programming
Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

3.2.1 Data types

What Are Data Types?

In programming, a data type defines the kind of data a variable or constant can hold. It tells
the program how the data will be stored, processed, and displayed.

Common Data Types

Term Description Examples

Integer (int) Whole numbers only, no decimals 5, -20, 0

Real (float)

Numbers that include a
fractional/decimal part. Also called float
in some languages

3.14, -0.5, 99.99

Boolean (bool) Often used for conditions and logic

True or False

Character (char) A single symbol or letter, enclosed in
single quotes for most programming
languages

'A', 'a', '#'

String (str) A sequence of characters, enclosed in
double quotes for most programming
languages

"Hello", "123", "£$%"

 Why Data Types Matter

●​ They help the computer understand how to store and manipulate data.
○​ For example, 123 is an integer, whereas “123” is a string – they are different

data types and so can undergo different operations.​

●​ Choosing the right data type ensures the program runs efficiently and without errors.​

●​ Some operations are only valid for certain types (e.g. you can’t divide strings).​

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.2 Programming concepts

What Are Programming Concepts?

Programming concepts are the building blocks of writing code. They include the fundamental
statements, control structures, and organisational techniques used to create functioning
programs.

Core Programming Statements

Statements Description Examples

Variable
Declaration

Creates a variable to store data. Example: name = "Alex"

Constant
Declaration

A value that does not change
while the program runs. Often
given fully uppercase identifiers.

Example: PI = 3.14

Assignment Setting or updating a value in a
variable.

Example: score = score + 10

Iteration (Loops)

Definite (Count-Controlled) Iteration

●​ Repeats a fixed number of times.​

●​ Example: FOR i ← 1 TO 5​

Indefinite (Condition-Controlled) Iteration

●​ Repeats while or until a condition is met.​

●​ Examples:​

○​ WHILE notDone​

○​ REPEAT ... UNTIL done​

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Nested Iteration

●​ A loop inside another loop.

●​ Example:​
​

Selection (Decision-Making)

IF Statements

●​ Executes code only if a condition is true.​

●​ Can include IF, ELSE IF, and ELSE.​

Nested Selection

●​ An IF statement inside another IF.​

●​ Example:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Subroutines (Procedures/Functions)

Subroutines

●​ A block of code given a unique name that can be called multiple times.​

●​ May include parameters and return values.

●​ Example:

Meaningful Identifier Names

●​ Use clear, descriptive names for variables, constants, and subroutines.​

●​ Good naming improves readability and understanding of code.​

●​ Example: Use totalMarks instead of x.

Note: Subroutines are covered in more detail in What Is a Subroutine?

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.3 Arithmetic operations

What Are Arithmetic Operations?

Arithmetic operations are the basic mathematical calculations that can be performed in a
programming language. These are essential for processing numerical data in algorithms and
programs.

Standard Arithmetic Operators

Operation Symbol Example Result

Addition + 3 + 2 5

Subtraction - 7 - 4 3

Multiplication * 5 * 3 15

Real Division / 10 / 4 2.5

Integer Division and Remainder

These are used when working with whole numbers only.

Operation Description Example Result

Integer Division Gives the whole number
quotient

11 DIV 2 5

Modulus (Remainder) Gives the remainder 11 MOD 2 1

These two together completely describe a division with remainder.

Modulus can also be performed using its sign, e.g. 11 % 2 is the same as 11 MOD 2.

MOD is useful as it can be used to identify if a number is even or odd, for example:

-​ 12 MOD 2 = 0 (even)
-​ 13 MOD 2 = 1 (odd)

An odd number modulus 2 will always have a remainder of 1, whilst an even number has no
remainder.

MOD can also be used similarly to check whether a number is a multiple of another.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.4 Relational operations

What Are Relational Operations?

Relational operations are used to compare two values. They return a Boolean value:

●​ True if the comparison is correct​

●​ False if it is not

These operations are commonly used in conditions, such as IF statements and loops.

Relational Operators

Operation Symbol in most
languages

Example Result

Equal to == 5 == 5 True

Not equal to != or <> 3 != 4 True

Less than < 2 < 5 True

Greater than > 6 > 7 False

Less than or equal to <= 5 <= 5 True

Greater than or equal to >= 7 >= 10 False

Note: The actual symbol may vary slightly between programming languages.

In Python: ==, !=

In VB.NET: =, <>

Where Are These Used?

●​ In IF, ELSE IF, and WHILE statements​

●​ To make decisions in code based on comparisons​

●​ To control the flow of loops and branches

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.5 Boolean operations

What Are Boolean Operations?

Boolean operations are logical operators that work with Boolean values (True or False).
They are used in conditions to control the flow of programs.

Boolean Operators Explained

Operator Description Example Result

NOT Reverses the Boolean value NOT True False

AND Returns True if both input conditions are true True AND
True

True

OR Returns True if either input condition is true True OR
False

True

Combined Conditions

Boolean operators can be combined in complex logic:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Truth Tables

AND

A B A AND B

True True True

True False False

False True False

False False False

OR

A B A OR B

True True True

True False True

False True True

False False False

NOT

A NOT A

True False

False True

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.6 Data structures

What Is a Data Structure?

A data structure is a way of organising and storing related data so it can be used efficiently
in a program. It helps manage collections of data.

1. Arrays

What is an array?

●​ A collection of similar data items (elements) stored under a single name.​

●​ Each item is accessed using an index (position number).​

Characteristics:

●​ Items must be of the same data type.​

●​ Indexing usually starts at 0 (in most languages).​

One-Dimensional Array (1D)

●​ A single list of items.​

●​ Example:​
 scores = [10, 20, 30]​
 scores[1] → 20​

Two-Dimensional Array (2D)

●​ An array of arrays (like a table or grid).​

●​ Example:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

2. Records

What is a record?

●​ A data structure used to group different types of data under one structure.​

●​ Each field in a record can have a different, defined data type.​

●​ Similar to a row in a database table.​

Example:

Arrays vs Records

Feature Arrays Records

Data Types All elements must be the same Can contain different data types

Accessed by Index Field name

Suited for Lists of similar items Grouping related attributes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.7 Input/Output

What Is Input/Output in Programming?

Input/Output (I/O) refers to how a program interacts with the outside world — specifically
how it:

●​ Receives data from the user (input)​

●​ Displays data or information to the user (output)

Input (Getting Data from the User)

Used to collect data that a program needs to process. Typically stored in a variable after
being entered.

Example (Pseudocode):

Example (Python):

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Output (Displaying Data)

Used to show messages, results, or prompts to the user.

Example (Pseudocode):

Example (Python):

Notes:

●​ Outputs can display text, numbers, or variable values.​

●​ Inputs are usually strings by default and may need type conversion (e.g.,
int(input(...)) in Python).​

●​ Input/output operations are often used with selection and iteration, such as prompting
repeatedly until valid data is entered.​

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.8 String handling

What Is String Handling?

String handling refers to the operations you can perform on strings (text data). Such as
measuring length, extracting substrings, combining strings, or converting between types.

A string is a sequence of characters, e.g. "hello123!"

Key String Operations

Operation Description Example

length Returns the number of
characters in a string

length("hello") → 5

position Returns the index of a
character or substring

position("hello", "e") → 1

substring Extracts a sequence of
characters within a string

substring("computer", 0, 2) →
"com"

concatenation Joins strings together "Hi" + " there" → "Hi there"

Character ↔ Code Conversions

Task Function Example

Character → ASCII code ASC("A") Returns 65

ASCII code → Character CHR(65) Returns "A"

String Conversion Operations

Task Function (in pseudocode/Python style) Example

String → Integer int("42") "42" → 42

String → Real float("3.14") "3.14" → 3.14

Integer → String str(42) 42 → "42"

Real → String str(3.14) 3.14 → "3.14"

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.9 Random number generation

What Is Random Number Generation?

Random number generation is the ability to produce unpredictable numeric values within a
specified range. It is commonly used in programs that involve:

●​ Games

●​ Simulations​

●​ Testing​

●​ Security (e.g. simple password generators)

Key Features

●​ Produces a different (seemingly random) value each time it runs​

●​ Usually requires you to define a range (minimum and maximum)​

●​ Must be assigned to a variable for use

Example Syntax (Pseudocode):

This assigns a random integer between 1 and 10 to the variable randomNum.

Example in Python:

Note: in Python, random.randint is inclusive of the parameters. For the Python example
above, 1 or 10 could be assigned to randomNum.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Typical Uses

●​ Rolling a die​

●​ Picking a random question or card​

●​ Generating test values for simulations​

●​ Randomly deciding outcomes in games (e.g. attack chance)

Good Practice

●​ Store the random value in a variable if it will be used more than once​

●​ Combine with loops or conditions for more dynamic outcomes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.10 Structured Programming and Subroutines

What Is Structured Programming?

Structured programming is a method of writing clear, modular, and easy-to-understand code
using three core principles:

1.​ Sequence – instructions executed in order​

2.​ Selection – decisions (IF, ELSE)​

3.​ Iteration – repetition (WHILE, FOR)

What Is a Subroutine?

A subroutine is a block of code that performs a specific task and can be reused by calling
it by name.

Types:

●​ Procedure: performs an action (may or may not return a value)​

●​ Function: performs an action and returns a value​

Example (Pseudocode):

Parameters and Return Values

●​ Parameters allow data to be passed into a subroutine​

●​ Return values allow data to be passed back to the main program
○​ The returned value should be assigned to a variable in the main program​

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Example:

Local Variables

●​ Declared inside a subroutine​

●​ Can only be accessed within that subroutine​

●​ Prevents conflicts between subroutines

●​ Only exist while the subroutine is executing

Advantages of Using Subroutines

Structured Approach Summary

Feature Benefit

Sequence Code runs in clear logical order

Selection Makes decisions based on conditions

Iteration Handles repetitive tasks

Modular design Easier maintenance and collaboration

Benefit Explanation

Modularity Code is split into manageable parts

Reusability Same subroutine can be reused without rewriting code

Readability Code is easier to understand and maintain

Testing and Debugging Subroutines can be tested independently

Reduced Repetition Avoids duplicating blocks of logic

Split Workload Subroutines can be spread amongst a team to complete

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.2.11 Robust and secure Programming

What Is Robust and Secure Programming?

Robust and secure programming is about writing code that:

●​ Prevents crashes​

●​ Handles incorrect input​

●​ Protects user data​

●​ Deals with errors effectively

It ensures that programs are safe, reliable, and resistant to failure.

1. Data Validation

Validation ensures that input is sensible before it’s processed.

Common Checks:

Type Description Example

Length check Input must be a minimum/maximum
length

Name must be at least 2
characters

Presence
check

Input cannot be left blank Email cannot be empty

Range check Number must fall within specific range Age must be between 1–120

2. Authentication

Authentication checks if a user is who they claim to be.

Example:

Note: Plain text is fine for GCSE – encryption is not required.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3. Testing and Test Data Types

Testing is used to:

●​ Check if a program works as intended​

●​ Find and fix bugs or errors​

Types of Test Data:

Type Purpose Example (Range: 1–10)

Normal Typical input 5

Boundary On the edge of valid range 1 and 10

Erroneous Invalid input -1, eleven, "abc"

4. Types of Errors

Type Description Example

Syntax
Error

Breaks the rules of the language (won’t run) Missing colon in
Python

Logic Error Code runs but produces the wrong result (harder to
spot)

Using + instead of *

Selecting Suitable Test Data

You should be able to:

●​ Identify appropriate test data for a given input field​

●​ Justify why it's used (e.g. “Boundary data ensures edge cases work”)​

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

	What Are Data Types?
	 Why Data Types Matter
	What Are Programming Concepts?
	Programming concepts are the building blocks of writing code. They include the fundamental statements, control structures, and organisational techniques used to create functioning programs.
	Core Programming Statements
	
	Iteration (Loops)
	Definite (Count-Controlled) Iteration
	Indefinite (Condition-Controlled) Iteration
	
	Nested Iteration

	Selection (Decision-Making)
	IF Statements
	Nested Selection

	
	Subroutines (Procedures/Functions)
	Subroutines

	
	Meaningful Identifier Names
	What Are Arithmetic Operations?
	Arithmetic operations are the basic mathematical calculations that can be performed in a programming language. These are essential for processing numerical data in algorithms and programs.
	Standard Arithmetic Operators
	
	Integer Division and Remainder
	What Are Relational Operations?
	Relational operations are used to compare two values. They return a Boolean value:
	●​True if the comparison is correct​
	●​False if it is not
	These operations are commonly used in conditions, such as IF statements and loops.
	Relational Operators
	
	Where Are These Used?
	What Are Boolean Operations?
	Boolean operations are logical operators that work with Boolean values (True or False). They are used in conditions to control the flow of programs.
	Boolean Operators Explained
	Combined Conditions
	Truth Tables
	AND
	
	OR
	NOT

	What Is a Data Structure?
	A data structure is a way of organising and storing related data so it can be used efficiently in a program. It helps manage collections of data.
	1. Arrays
	What is an array?
	Characteristics:
	One-Dimensional Array (1D)
	Two-Dimensional Array (2D)

	2. Records
	What is a record?
	Example:

	What Is Input/Output in Programming?
	Input/Output (I/O) refers to how a program interacts with the outside world — specifically how it:
	●​Receives data from the user (input)​
	●​Displays data or information to the user (output)
	Input (Getting Data from the User)
	Used to collect data that a program needs to process. Typically stored in a variable after being entered.
	Example (Pseudocode):

	
	
	Output (Displaying Data)
	Notes:
	What Is String Handling?
	String handling refers to the operations you can perform on strings (text data). Such as measuring length, extracting substrings, combining strings, or converting between types.
	A string is a sequence of characters, e.g. "hello123!"
	What Is Random Number Generation?
	Random number generation is the ability to produce unpredictable numeric values within a specified range. It is commonly used in programs that involve:
	●​Games
	●​Simulations​
	●​Testing​
	●​Security (e.g. simple password generators)
	Key Features
	
	Typical Uses
	Good Practice
	What Is Structured Programming?
	Structured programming is a method of writing clear, modular, and easy-to-understand code using three core principles:
	1.​Sequence – instructions executed in order​
	2.​Selection – decisions (IF, ELSE)​
	3.​Iteration – repetition (WHILE, FOR)
	What Is a Subroutine?
	Example (Pseudocode):

	Parameters and Return Values
	●​Parameters allow data to be passed into a subroutine​
	●​Return values allow data to be passed back to the main program
	○​The returned value should be assigned to a variable in the main program​
	
	Example:

	
	Local Variables
	What Is Robust and Secure Programming?
	Robust and secure programming is about writing code that:
	●​Prevents crashes​
	●​Handles incorrect input​
	●​Protects user data​
	●​Deals with errors effectively
	It ensures that programs are safe, reliable, and resistant to failure.
	1. Data Validation
	Validation ensures that input is sensible before it’s processed.
	Common Checks:

	Type
	Description
	Example
	Length check
	Input must be a minimum/maximum length
	Name must be at least 2 characters
	Presence check
	Input cannot be left blank
	Email cannot be empty
	Range check
	Number must fall within specific range
	Age must be between 1–120
	
	2. Authentication
	Authentication checks if a user is who they claim to be.
	Example:

	
	3. Testing and Test Data Types
	Testing is used to:
	Types of Test Data:

	Selecting Suitable Test Data

